Biotechnology is on the brink of the biggest scientific advance since researchers discovered in the 1970s how to insert DNA into living cells. Fast and accurate new “gene editing”, which cuts and pastes DNA at exactly the right place in the target genome, is about to replace the slower hit-and-miss methods of genetic engineering used for the past 40 years.
Laboratories around the world are adopting gene editing, particularly a technique called Crispr (pronounced ‘crisper’), which will accelerate the genetic manipulation of microbes, plants, animals — and people. While scientists are talking excitedly about the great promise and potential risks of gene editing, these have not yet received the attention they deserve from the public or policymakers.
Most concern focuses on human gene editing. Crispr offers a relatively simple means, accessible to any fertility lab with a supply of eggs, sperm or embryos, to engineer the human germline — make irreversible changes that are passed on to future generations.